Let $m, n$ be real numbers such that $0 \leq m \leq \sqrt{3}$ and $-\sqrt{3} \leq n \leq 0$. The minimum possible area of the region of the plane consisting of points $(x, y)$ satisfying in inequalities $y \geq 0, y-3 \leq m x$, $y -3 \leq nx$, is
$0$
$\frac{3 \sqrt{3}}{2}$
$3 \sqrt{3}$
$6 \sqrt{3}$
If $A$ is $(2, 5)$, $B$ is $(4, -11)$ and $ C$ lies on $9x + 7y + 4 = 0$, then the locus of the centroid of the $\Delta ABC$ is a straight line parallel to the straight line is
Let the circumcentre of a triangle with vertices $A ( a , 3), B ( b , 5)$ and $C ( a , b ), ab >0$ be $P (1,1)$. If the line $AP$ intersects the line $BC$ at the point $Q \left( k _{1}, k _{2}\right)$, then $k _{1}+ k _{2}$ is equal to.
If a variable line drawn through the point of intersection of straight lines $\frac{x}{\alpha } + \frac{y}{\beta } = 1$and $\frac{x}{\beta } + \frac{y}{\alpha } = 1$ meets the coordinate axes in $A$ and $B$, then the locus of the mid point of $AB$ is
In a triangle $ABC,$ side $AB$ has the equation $2 x + 3 y = 29$ and the side $AC$ has the equation , $x + 2 y = 16$ . If the mid - point of $BC$ is $(5, 6)$ then the equation of $BC$ is :
The area of the parallelogram formed by the lines $y = mx,\,y = mx + 1,\,y = nx$ and $y = nx + 1$ equals