Let $m, n$ be real numbers such that $0 \leq m \leq \sqrt{3}$ and $-\sqrt{3} \leq n \leq 0$. The minimum possible area of the region of the plane consisting of points $(x, y)$ satisfying in inequalities $y \geq 0, y-3 \leq m x$, $y -3 \leq nx$, is
$0$
$\frac{3 \sqrt{3}}{2}$
$3 \sqrt{3}$
$6 \sqrt{3}$
Let $b, d>0$. The locus of all points $P(r, \theta)$ for which the line $P$ (where, $O$ is the origin) cuts the line $r \sin \theta=b$ in $Q$ such that $P Q=d$ is
If the equation of the locus of a point equidistant from the points $({a_1},{b_1})$ and $({a_2},{b_2})$ is $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$, then the value of $‘c’$ is
Let $PS$ be the median of the triangle with vertices $P(2,2) , Q(6,-1) $ and $R(7,3) $. The equation of the line passing through $(1,-1) $ and parallel to $PS $ is :
Equation of one of the sides of an isosceles right angled triangle whose hypotenuse is $3x + 4y = 4$ and the opposite vertex of the hypotenuse is $(2, 2)$, will be
If in a parallelogram $ABDC$, the coordinates of $A, B$ and $C$ are respectively $(1, 2), (3, 4)$ and $(2, 5)$, then the equation of the diagonal $AD$ is