- Home
- Standard 11
- Mathematics
9.Straight Line
normal
Let $m, n$ be real numbers such that $0 \leq m \leq \sqrt{3}$ and $-\sqrt{3} \leq n \leq 0$. The minimum possible area of the region of the plane consisting of points $(x, y)$ satisfying in inequalities $y \geq 0, y-3 \leq m x$, $y -3 \leq nx$, is
A
$0$
B
$\frac{3 \sqrt{3}}{2}$
C
$3 \sqrt{3}$
D
$6 \sqrt{3}$
(KVPY-2021)
Solution
(c)
$y = mx +3$,$m \in[0, \sqrt{3}]$
$y = nx +3$,$n \in[-\sqrt{3}, 0]$
min area $=$ are $(\Delta PAB )=\frac{1}{2} \times 2 \sqrt{3} \times 3=3 \sqrt{3}$
Standard 11
Mathematics