- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If $A$ and $B$ are two square matrices of order $3$ such that $AB = A$ and $BA = B$ and matrices $X$,$Y$ and $Z$ are defined as $(X = A^4 + B^4)$, $Y$ = $A^{10}+ B^{10},$ then the matrix $X -Y$ is
A
Singular
B
Involutary
C
Orthogonal
D
Invertible
Solution
$\mathrm{B}(\mathrm{AB})=(\mathrm{BA}) \mathrm{B}=\mathrm{B}^{2}$
$=\mathrm{B}(\mathrm{AB})=\mathrm{BA}=\mathrm{B}$
$\therefore \quad B^{2}=B \quad $ and $ A^{2}=A$
$A^{4}=A, B^{4}=B$
$\mathrm{A}^{10}=\mathrm{A}, \mathrm{B}^{10}=\mathrm{B}$
$\therefore \quad \mathrm{X}-\mathrm{Y}=\mathrm{O} \quad \therefore \quad$ singular
Standard 12
Mathematics