- Home
- Standard 11
- Mathematics
Let $a \neq b$ be two non-zero real numbers.Then the number of elements in the set $X =\left\{ z \in C : \operatorname{Re}\left(a z^2+ bz \right)= a \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$ is equal to
$1$
$3$
$0$
$2$
Solution
$\operatorname{Re}\left(a z^2+b z\right)=a$
$a z^2+b z+a \bar{z}^2+b \bar{z}=2 a$
$a\left(z^2+\bar{z}^2\right)+ b ( z +\overline{ z })=2 a$
$\operatorname{Re}\left( bz z^2+ az \right)= b$
$b z^2+a z+b \bar{z}^2+ az =2 b$
$b \left( z ^2+\overline{ z }^2\right)+ a ( z +\overline{ z })=2 b$
$(1) \times b-(2) \times(a)$
$\Rightarrow\left(b^2-a^2\right)(z+\bar{z})=0$
$\Rightarrow \quad(z+\bar{z})=0 \quad\left(a^2 \neq b^2\right)$
$(1) \times a-(2) \times(b)$
$\Rightarrow \quad\left(a^2-b^2\right)(z+\bar{z})=2\left(a^2-b^2\right) \quad\left(a^2 \neq b^2\right)$
$z^2+\bar{z}^2=2$
$\Rightarrow(z+\bar{z})^2-2 z \bar{z}=2$
$z \bar{z}=-1$
$\Rightarrow 1+1^2=-1$
$\Rightarrow \text { No solution }$
$\text { But when } a=-b$
$\operatorname{Re}\left(a z^2-a z\right)=a$
$\Rightarrow \quad \operatorname{Re}\left(a\left(x^2-y^2+i 2 x y\right)-a(x+i y)\right)=a$
$\Rightarrow a\left(x^2-y^2\right)-a x=a$
$\Rightarrow x^2-y^2-x=1$
$\Rightarrow x^2-x-1=y^2$
For any real values of $y$ there two values of $x$, hence infinite complex numbers are possible.