Let $\alpha=8-14 i , A=\left\{ z \in C : \frac{\alpha z -\bar{\alpha} \overline{ z }}{ z ^2-(\overline{ z })^2-112 i }=1\right\}$ and $B =\{ z \in C :| z +3 i |=4\}$ Then $\sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)$ is equal to $...............$.
$14$
$13$
$12$
$11$
If $z$ is a complex number such that ${z^2} = {(\bar z)^2},$ then
The values of $z$for which $|z + i|\, = \,|z - i|$ are
Number of complex numbers $z$ such that $\left| z \right| + z - 3\bar z = 0$ is equal to
${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$ is equal to
The amplitude of the complex number $z = \sin \alpha + i(1 - \cos \alpha )$ is