Let $S = \{ 0,\,1,\,5,\,4,\,7\} $. Then the total number of subsets of $S$ is
$64$
$32$
$40$
$20$
Match each of the set on the left described in the roster form with the same set on the right described in the set-builder form:
$(i)$ $\{ P,R,I,N,C,A,L\} $ | $(a)$ $\{ x:x$ is a positive integer and is adivisor of $18\} $ |
$(ii)$ $\{ \,0\,\} $ | $(b)$ $\{ x:x$ is an integer and ${x^2} - 9 = 0\} $ |
$(iii)$ $\{ 1,2,3,6,9,18\} $ | $(c)$ $\{ x:x$ is an integer and $x + 1 = 1\} $ |
$(iv)$ $\{ 3, - 3\} $ | $(d)$ $\{ x:x$ is aletter of the word $PRINCIPAL\} $ |
Let $A=\{1,2,\{3,4\}, 5\} .$ Which of the following statements are incorrect and why ?
$\{ 3,4\} \in A$
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If $A \subset B$ and $B \subset C,$ then $A \subset C$
State which of the following sets are finite or infinite :
$\{ x:x \in N$ and $x$ is odd $\} $
List all the subsets of the set $\{-1,0,1\}.$