How many elements has $P(A),$ if $A=\varnothing ?$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that if $A$ is a set with $m$ elements i.e., $n(A)=m,$ then $n[p(A)]=2^{m}$

If $A=\varnothing,$ then $n(A)=0$

$\therefore n[P(A)]=2^{0}=1$

Hence, $P(A)$ has one element.

Similar Questions

Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:

$ 4\, ......... \, A $

Let $A=\{a, e, i, o, u\}$ and $B=\{a, b, c, d\} .$ Is $A$ a subset of $B ?$ No. (Why?). Is $B$ a subset of $A ?$ No. (Why?)

Write the following as intervals :

$\{ x:x \in R,3\, \le \,x\, \le \,4\} $

Write the following as intervals :

$\{ x:x \in R, - 12\, < \,x\, < \, - 10\} $

Let $S=\{1,2,3,4\}$. The total number of unordered pairs of disjoint subsets of $S$ is equal to

  • [IIT 2010]