How many elements has $P(A),$ if $A=\varnothing ?$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that if $A$ is a set with $m$ elements i.e., $n(A)=m,$ then $n[p(A)]=2^{m}$

If $A=\varnothing,$ then $n(A)=0$

$\therefore n[P(A)]=2^{0}=1$

Hence, $P(A)$ has one element.

Similar Questions

Which set is the subset of all given sets

Write the following sets in the set-builder form :

${\rm{\{ 5,25,125,625\} }}$

Let $A=\{1,2,\{3,4\}, 5\} .$ Which of the following statements are incorrect and why ?

$\{ \{ 3,4\} \}  \subset A$

Examine whether the following statements are true or false :

$\{ a\}  \in \{ a,b,c\} $

In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If $A \not\subset B$ and $B \not\subset C,$ then $A \not\subset C$