- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
Let $A$ be a square matrix of order $2$ such that $|A|=2$ and the sum of its diagonal elements is $-3$ . If the points $(x, y)$ satisfying $A^2+x A+y I=0$ lie on a hyperbola, whose transverse axis is parallel to the x-axis, eccentricity is e and the length of the latus rectum is $\ell$, then $\mathrm{e}^4+\ell^4$ is equal to...........................
A
$25$
B
$78$
C
$28$
D
$46$
(JEE MAIN-2024)
Solution
Given $|A|=2$
trace $\mathrm{A}=-3$
and $\mathrm{A}^2+\mathrm{xA}+\mathrm{yI}=0$
$\Rightarrow \mathrm{x}=3, \mathrm{y}=2$
so, information is incomplete to determine eccentricity of hyperbola ($e$) and length of latus rectum of hyperbola $(\ell)$
Standard 12
Mathematics
Similar Questions
normal