ધારો કે $\mathrm{A}=\{1,3,7,9,11\}$ અને $\mathrm{B}=\{2,4,5,7,8,10,12\}$. તો $f(1)+f(3)=14$ થાય તેવા એક-એક વિધેયો $f: A \rightarrow B$ ની કુલ સંખ્યા .......... છે.
$180$
$120$
$480$
$240$
ધારો કે $f : R \rightarrow R$ એ સતત વિધેય છે કે જેથી $f(3 x)-f(x)=x$ છે જો $f(8)=7$ હોય તો $f(14)$ ની કિમંત મેળવો.
જો વિધેય $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$ નો પ્રદેશ $[\alpha, \beta) U (\gamma, \delta]$ હોય, તો $|3 \alpha+10(\beta+\gamma)+21 \delta|=..........$
અહી $f(x)=x^6-2 x^3+x^3+x^2-x-1$ અને $g(x)=x^4-x^3-x^2-1$ બે બહુપદી છે. અહી $a, b, c$ અને $d$ એ $g(x)=0$ ના બીજ હોય તો $f(a)+f(b)+f(c)+f(d)$ ની કિમંત મેળવો.
$log\,log\,log\, ....(x)$ નો પ્રદેશગણ મેળવો.
$ \leftarrow \,n\,\,times\, \to $
ધારોકે $f: R \rightarrow R$ એવો વિધેય છે કે જ્યાં $f(x)=\frac{x^2+2 x+1}{x^2+1}$ તો