જો $y = 3[x] + 1 = 4[x -1] -10$ હોય તો $[x + 2y]$ = ........... (જ્યા $[.]$ = $G.I.F.$)
$76$
$61$
$107$
$67$
ધારો કે $R_*$ તમામ શૂન્યતર વાસ્તવિક સંખ્યાઓનો ગણ છે. સાબિત કરો કે વિધેય $f: R_* \rightarrow R_*,$ $f(x)=\frac{1}{x}$ વડે વ્યાખ્યાયિત વિધય $f$ એક-એક અને વ્યાપ્ત છે. જો પ્રદેશ $R_*$ ના બદલે $N$ લેવામાં આવે અને સહપ્રદેશ $R_*$ જ રહે તો શું આ પરિણામ સત્ય રહેશે ?
વિધેય $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ નો વિસ્તાર મેળવો.
જો $A= \{1, 2, 3, 4\}$ અને સંબંધ $R : A \to A$ ; $R = \{ (1, 1), (2, 3), (3, 4), ( 4, 2) \}$ આપેલ હોય તો આપેલ પૈકી સત્ય વિધાન મેળવો.
જો $R _{1}$ અને $R _{2}$ બે સંબંધો નીચે મુજબ વ્યાખીયાયિત છે :
$R _{1}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \in Q \right\}$ અને $R _{2}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \notin Q \right\}$
જ્યાં $Q$ એ સંમેય સંખ્યાઓનો ગણ છે તો
જો $S=\{1,2,3,4,5,6,7\} $ આપેલ છે. વિધેય $f:S \rightarrow S$ કેટલા શક્ય બને કે જેથી દરેક $m, n \in S$ માટે $f(m \cdot n)=f(m) \cdot f(n)$ અને $m . n \in S$ થાય.