Let $\mathrm{A}_1, \mathrm{G}_1, \mathrm{H}_1$ denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For $\mathrm{n} \geq 2$, let $A_{n-1}$ and $H_{n-1}$ has arithmetic, geometric and harmonic means as $A_n, G_n, H_n$ respectively.
$1.$ Which one of the following statements is correct?
$(A)$ $\mathrm{G}_1>\mathrm{G}_2>\mathrm{G}_3>\ldots$
$(B)$ $\mathrm{G}_1<\mathrm{G}_2<\mathrm{G}_3<\ldots$
$(C)$ $\mathrm{G}_1=\mathrm{G}_2=\mathrm{G}_3=\ldots$
$(D)$ $\mathrm{G}_1<\mathrm{G}_3<\mathrm{G}_5<\ldots$ and $\mathrm{G}_2>\mathrm{G}_4>\mathrm{G}_6>\ldots$
$2.$ Which of the following statements is correct?
$(A)$ $A_1>A_2>A_5>\ldots$
$(B)$ $A_1$
$(C)$ $\mathrm{A}_1>\mathrm{A}_3>\mathrm{A}_5>\ldots$ and $\mathrm{A}_2<\mathrm{A}_4<\mathrm{A}_6<\ldots$
$(D)$ $A_1A_4 > A_6 > \ldots$
$3.$ Which of the following statements is correct?
$(A)$ $\mathrm{H}_1>\mathrm{H}_2>\mathrm{H}_3>\ldots$
$(B)$ $\mathrm{H}_1<\mathrm{H}_2<\mathrm{H}_3<\ldots$
$(C)$ $\mathrm{H}_1>\mathrm{H}_3>\mathrm{H}_5>\ldots$ and $\mathrm{H}_2<\mathrm{H}_4<\mathrm{H}_6<\ldots$
$(D)$ $\mathrm{H}_1<\mathrm{H}_3<\mathrm{H}_5<\ldots$ and $\mathrm{H}_2>\mathrm{H}_4>\mathrm{H}_6>\ldots$
Give the answer question $1,2$ and $3.$
$D,B,C$
$B,A,A$
$C,A,B$
$B,B,C$
If $a,\;b,\;c$ are in $G.P.$, $a - b,\;c - a,\;b - c$ are in $H.P.$, then $a + 4b + c$ is equal to
Consider an arithmetic series and a geometric series having four initial terms from the set $\{11,8,21,16,26,32,4\}$ If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to .......
The minimum value of $2^{sin x}+2^{cos x}$ is
If $a,\;b,\;c$ are in $A.P.$, then $\frac{a}{{bc}},\;\frac{1}{c},\;\frac{2}{b}$ are in
The geometric and harmonic means of two numbers $x_1$ and $x_2$ are $18$ and $16\frac {8}{13}$ respectively. The value of $|x_1 -x_2|$ is