Let $\mathrm{A}_1, \mathrm{G}_1, \mathrm{H}_1$ denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For $\mathrm{n} \geq 2$, let $A_{n-1}$ and $H_{n-1}$ has arithmetic, geometric and harmonic means as $A_n, G_n, H_n$ respectively.

$1.$  Which one of the following statements is correct?

$(A)$ $\mathrm{G}_1>\mathrm{G}_2>\mathrm{G}_3>\ldots$

$(B)$ $\mathrm{G}_1<\mathrm{G}_2<\mathrm{G}_3<\ldots$

$(C)$ $\mathrm{G}_1=\mathrm{G}_2=\mathrm{G}_3=\ldots$

$(D)$ $\mathrm{G}_1<\mathrm{G}_3<\mathrm{G}_5<\ldots$ and $\mathrm{G}_2>\mathrm{G}_4>\mathrm{G}_6>\ldots$

$2.$ Which of the following statements is correct?

$(A)$ $A_1>A_2>A_5>\ldots$

$(B)$ $A_1$

$(C)$ $\mathrm{A}_1>\mathrm{A}_3>\mathrm{A}_5>\ldots$ and $\mathrm{A}_2<\mathrm{A}_4<\mathrm{A}_6<\ldots$

$(D)$ $A_1A_4 > A_6 > \ldots$

$3.$ Which of the following statements is correct?

$(A)$ $\mathrm{H}_1>\mathrm{H}_2>\mathrm{H}_3>\ldots$

$(B)$ $\mathrm{H}_1<\mathrm{H}_2<\mathrm{H}_3<\ldots$

$(C)$ $\mathrm{H}_1>\mathrm{H}_3>\mathrm{H}_5>\ldots$ and $\mathrm{H}_2<\mathrm{H}_4<\mathrm{H}_6<\ldots$

$(D)$ $\mathrm{H}_1<\mathrm{H}_3<\mathrm{H}_5<\ldots$ and $\mathrm{H}_2>\mathrm{H}_4>\mathrm{H}_6>\ldots$

Give the answer question $1,2$ and $3.$

  • [IIT 2007]
  • A

    $D,B,C$

  • B

    $B,A,A$

  • C

    $C,A,B$

  • D

    $B,B,C$

Similar Questions

If $a,\;b,\;c$ are in $G.P.$, $a - b,\;c - a,\;b - c$ are in $H.P.$, then $a + 4b + c$ is equal to

Consider an arithmetic series and a geometric series having four initial terms from the set $\{11,8,21,16,26,32,4\}$ If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to .......

  • [JEE MAIN 2021]

The minimum value of $2^{sin x}+2^{cos x}$ is

  • [JEE MAIN 2020]

If $a,\;b,\;c$ are in $A.P.$, then $\frac{a}{{bc}},\;\frac{1}{c},\;\frac{2}{b}$ are in

The geometric and harmonic means of two numbers $x_1$ and $x_2$ are $18$ and $16\frac {8}{13}$ respectively. The value of $|x_1 -x_2|$ is