The minimum value of $2^{sin x}+2^{cos x}$ is
$2^{1-\frac{1}{\sqrt{2}}}$
$2^{-1+\sqrt{2}}$
$2^{1-\sqrt{2}}$
$2^{-1+\frac{1}{\sqrt{2}}}$
Let $a$, $b \in R$ be such that $a$, $a + 2b$ , $2a + b$ are in $A.P$. and $(b + 1)^2$, $ab + 5$, $(a + 1)^2$ are in $G.P.$ then $(a + b)$ equals
If $a,\;b,\;c$ are in $G.P.$ and $\log a - \log 2b,\;\log 2b - \log 3c$ and $\log 3c - \log a$ are in $A.P.$, then $a,\;b,\;c$ are the length of the sides of a triangle which is
Let the range of the function
$f(x)=\frac{1}{2+\sin 3 x+\cos 3 x}, x \in \operatorname{IR} \text { be }[a, b] .$ If $\alpha$ and $\beta$ are respectively the $A.M.$ and the $G.M.$ of a and $b$, then $\frac{\alpha}{\beta}$ is equal to :
If $A.M$ and $G.M$ of $x$ and $y$ are in the ratio $p : q$, then $x : y$ is
If $a, b$ are positive real numbers such that the lines $a x+9 y=5$ and $4 x+b y=3$ are parallel, then the least possible value of $a +b$ is