- Home
- Standard 11
- Mathematics
6.Permutation and Combination
normal
Let $S=\{1,2,3, \ldots ., 9\}$. For $k=1,2, \ldots \ldots, 5$, let $N_K$ be the number of subsets of $S$, each containing five elements out of which exactly $k$ are odd. Then $N_1+N_2+N_3+N_4+N_5=$
A
$210$
B
$252$
C
$125$
D
$126$
(IIT-2017)
Solution
There are only $4$ even numbers in $S$
$\therefore \quad$ Any subset of 5 elements of $S$ will have at least $1$ odd number.
$\Rightarrow \quad \mathrm{N}_1+\mathrm{N}_2+\mathrm{N}_3+\mathrm{N}_4+\mathrm{N}_5={ }^9 \mathrm{C}_5=126$
Standard 11
Mathematics