Gujarati
Hindi
14.Probability
normal

Let $\omega$ be a complex cube root of unity with $\omega \neq 1$. A fair die is thrown three times. If $r_1, r_2$ and $r_3$ are the numbers obtained on the die, then the probability that $\omega^{I_1}+\omega^{\mathrm{I}_2}+\omega^{\mathrm{I}_3}=0$ is

A

$\frac{1}{18}$

B

$\frac{1}{9}$

C

$\frac{2}{9}$

D

$\frac{1}{36}$

(IIT-2010)

Solution

$ \mathrm{r}_1, \mathrm{r}_2, \mathrm{r}_3 \in\{1,2,3,4,5,6\} $

$ \mathrm{r}_1, \mathrm{r}_2, \mathrm{r}_3 \text { are of the form } 3 \mathrm{k}, 3 \mathrm{k}+1,3 \mathrm{k}+2 $

$ \text { Required probability }=\frac{3!\times{ }^2 \mathrm{C}_1 \times{ }^2 \mathrm{C}_1 \times{ }^2 \mathrm{C}_1}{6 \times 6 \times 6}=\frac{6 \times 8}{216}=\frac{2}{9}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.