- Home
- Standard 11
- Mathematics
14.Probability
normal
Let $\omega$ be a complex cube root of unity with $\omega \neq 1$. A fair die is thrown three times. If $r_1, r_2$ and $r_3$ are the numbers obtained on the die, then the probability that $\omega^{I_1}+\omega^{\mathrm{I}_2}+\omega^{\mathrm{I}_3}=0$ is
A
$\frac{1}{18}$
B
$\frac{1}{9}$
C
$\frac{2}{9}$
D
$\frac{1}{36}$
(IIT-2010)
Solution
$ \mathrm{r}_1, \mathrm{r}_2, \mathrm{r}_3 \in\{1,2,3,4,5,6\} $
$ \mathrm{r}_1, \mathrm{r}_2, \mathrm{r}_3 \text { are of the form } 3 \mathrm{k}, 3 \mathrm{k}+1,3 \mathrm{k}+2 $
$ \text { Required probability }=\frac{3!\times{ }^2 \mathrm{C}_1 \times{ }^2 \mathrm{C}_1 \times{ }^2 \mathrm{C}_1}{6 \times 6 \times 6}=\frac{6 \times 8}{216}=\frac{2}{9}$
Standard 11
Mathematics