- Home
- Standard 12
- Mathematics
Let $\mathrm{p}$ be an odd prime number and $\mathrm{T}_{\mathrm{p}}$ be the following set of $2 \times 2$ matrices :
$T_p=\left\{A=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{a}\end{array}\right]: \mathrm{a}, \mathrm{b}, \mathrm{c} \in\{0,1, \ldots ., \mathrm{p}-1\}\right\}$
$1.$ The number of $A$ in $T_p$ such that $A$ is either symmetric or skew-symmetric or both, and $\operatorname{det}(\mathrm{A})$ divisible by $\mathrm{p}$ is
$(A)$ $(\mathrm{p}-1)^2$ $(B)$ $2(\mathrm{p}-1)$
$(C)$ $(\mathrm{p}-1)^2+1$ $(D)$ $2 \mathrm{p}-1$
$2.$ The number of $A$ in $T_p$ such that the trace of $A$ is not divisible by $p$ but det $(A)$ is divisible by $p$ is [Note: The trace of a matrix is the sum of its diagonal entries.]
$(A)$ $(\mathrm{p}-1)\left(\mathrm{p}^2-\mathrm{p}+1\right)$ $(B)$ $\mathrm{p}^3-(\mathrm{p}-1)^2$
$(C)$ $(\mathrm{p}-1)^2$ $(D)$ $(p-1)\left(p^2-2\right)$
$3.$ The number of $A$ in $T_p$ such that det $(A)$ is not divisible by $p$ is
$(A)$ $2 \mathrm{p}^2$ $(B)$ $p^3-5 p$ $(C)$ $p^3-3 p$ $(D)$ $p^3-p^2$
Give the answer question $1,2$ and $3.$
$(A,B,C)$
$(D,C,D)$
$(D,A,B)$
$(A,B,D)$
Solution
$1.$ $ \text { We must have } a^2-b^2=k p $
$ \Rightarrow(a+b)(a-b)=k p $
$ \Rightarrow \text { either } a-b=0 \text { or } a+b \text { is a multiple of } p $
$ \text { when } a=b \text {; number of matrices is } p $
$ \text { and when } a+b=\text { multiple of } p \Rightarrow a, b \text { has } p-1 $
$ \therefore \text { Total number of matrices }=p+p-1 $
$ =2 p-1$