Gujarati
10-2. Parabola, Ellipse, Hyperbola
normal

Let $H : \frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$, where $a > b >0$, be $a$ hyperbola in the $xy$-plane whose conjugate axis $LM$ subtends an angle of $60^{\circ}$ at one of its vertices $N$. Let the area of the triangle $LMN$ be $4 \sqrt{3}$..

List $I$ List $II$
$P$ The length of the conjugate axis of $H$ is $1$ $8$
$Q$ The eccentricity of $H$ is $2$ ${\frac{4}{\sqrt{3}}}$
$R$ The distance between the foci of $H$ is $3$ ${\frac{2}{\sqrt{3}}}$
$S$ The length of the latus rectum of $H$ is $4$ $4$

The correct option is:

A

$P \rightarrow 4 ; Q \rightarrow 2 ; R \rightarrow 1 ; S \rightarrow 3$

B

$P \rightarrow 4 ; Q \rightarrow 3 ; R \rightarrow 1 ; S \rightarrow 2$

C

$P \rightarrow 4 ; Q \rightarrow 1 ; R \rightarrow 3 ; S \rightarrow 2$

D

$P \rightarrow 3 ; Q \rightarrow 4 ; R \rightarrow 2 ; S \rightarrow 1$

(IIT-2018)

Solution

$\triangle LMN =4 \sqrt{3}$

$\frac{1}{2} 2 ab =4 \sqrt{3}$

$ab =4 \sqrt{3}$

$\text { a. }\left(\frac{ a }{\sqrt{3}}\right)=4 \sqrt{3}$

$a ^2=12 \Rightarrow a =2 \sqrt{3}$

$\frac{ b }{ a }=\tan 30^{\circ}$

$b =\frac{2 \sqrt{3}}{\sqrt{3}}=20$

Length of conjugate axis $2 b =4$.

$e =\sqrt{1+\frac{4}{12}}=\sqrt{1+\frac{1}{3}}=\frac{2}{\sqrt{3}}$

$SS ^{\prime}=2 ae =2 \times 2 \sqrt{3} \times \frac{2}{\sqrt{3}}=8$

$\text { L.R. }=\frac{2 b ^2}{ a }=\frac{2 \times 4}{2 \sqrt{3}}=\frac{4}{\sqrt{3}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.