माना कि $H: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, जहाँ $a>b>0, x y$ - समतल (plane) में एक ऐसा अतिपरवलय (hyperbola) है जिसका संयुग्मी अक्ष (conjugate axis) $L M$ उसके एक शीर्ष (vertex) $N$ पर $60^{\circ}$ का कोण (angle) अंतरित (subtend) करता है। माना कि त्रिभुज (triangle) $L M N$ का क्षेत्रफल (area) $4 \sqrt{3}$ है।

सूची - $I$ सूची - $II$
$P$ $H$ के संयुग्मी अक्ष की लम्बाई है $1$ $8$
$Q$ $H$ की उत्केन्द्रता (eccentricity) है $2$ ${\frac{4}{\sqrt{3}}}$
$R$ $H$ की नाभियों (foci) के बीच की दूरी है $3$ ${\frac{2}{\sqrt{3}}}$
$S$ $H$ के नाभिलम्ब जीवा (latus rectum) की लम्बाई है $4$ $4$

दिए हुए विकल्पों मे से सही विकल्प है:

  • [IIT 2018]
  • A

    $P \rightarrow 4 ; Q \rightarrow 2 ; R \rightarrow 1 ; S \rightarrow 3$

  • B

    $P \rightarrow 4 ; Q \rightarrow 3 ; R \rightarrow 1 ; S \rightarrow 2$

  • C

    $P \rightarrow 4 ; Q \rightarrow 1 ; R \rightarrow 3 ; S \rightarrow 2$

  • D

    $P \rightarrow 3 ; Q \rightarrow 4 ; R \rightarrow 2 ; S \rightarrow 1$

Similar Questions

अतिपरवलय (hyperbola)

$\frac{x^2}{100}-\frac{y^2}{64}=1$

पर विचार कीजिए जिसकी नाभियाँ (foci) $S$ एवं $S _1$ पर हैं, जहाँ $S$ धनात्मक $x$-अक्ष पर स्थित है। माना कि $P$ प्रथम चतुर्थाश (first quadrant) में अतिपरवलय पर एक बिंदु है। माना कि $\angle SPS _1=\alpha$ है, जहाँ $\alpha<\frac{\pi}{2}$ है। बिन्दु $S$ से जाने वाली सरल रेखा, जिसकी ढाल (slope) अतिपरवलय के बिंदु $P$ पर स्पर्श रेखा (tangent) के ढाल के बराबर है, सरल रेखा $S _1 P$ को $P _1$ पर प्रतिच्छेदित (intersect) करती है। माना कि $P$ की सरल रेखा $SP _1$ से दूरी $\delta$ है, एवं $\beta= S _1 P$ है। तब $\frac{\beta \delta}{9} \sin \frac{\alpha}{2}$ से कम या बराबर महत्तम पूर्णांक (greatest integer less than or equal to). . . . . . . . . है।

  • [IIT 2022]

सरल रेखा $lx + my = n$ का अतिपरवलय ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ पर अभिलम्ब होने का प्रतिबन्ध होगा

यदि रेखा $x -1=0$, अतिपरवलय $kx ^2- y ^2=6$ की एक नियता है, तो यह अतिपरवलय किस बिंदु से होकर जाता है ?

  • [JEE MAIN 2022]

यदि किसी अतिपरवलय की उत्केन्द्रता तथा इसकी संयुग्मी की उत्केन्द्रता क्रमश:  $e$ तथा $e’$ हो, तो 

बिन्दुओं $(3, 0)$ तथा $(3\sqrt 2 ,\;2)$ से गुजरने वाले अतिपरवलय की उत्केन्द्रता होगी