Gujarati
3 and 4 .Determinants and Matrices
normal

Let $\omega$ be a complex cube root of unity with $\omega \neq 1$ and $P=\left[p_j\right]$ be a $n \times n$ matrix with $p_{i j}=\omega^{i+j}$. Then $P ^2 \neq 0$, when $n =$

$(A)$ $57$ $(B)$ $55$ $(C)$ $58$ $(D)$ $56$

A

$(A,B,C)$

B

$(A,B,D)$

C

$(A,C,D)$

D

$(B,C,D)$

(IIT-2013)

Solution

$n=1 $

$P=\left[\omega^2\right] $

$P^2=\left[\omega^4\right] \neq 0$

$n=2 $

$P=\left[\begin{array}{ll}\omega^2 & \omega^3 \\ \omega^3 & \omega^4\end{array}\right]=\left[\begin{array}{cc}\omega^2 & 1 \\ 1 & \omega\end{array}\right]$

$P ^2=$ $\left[\begin{array}{cc}\omega^4+1 & \ldots \\ \cdots & \ldots\end{array}\right] \neq 0$

$n=3 $

$P=\left[\begin{array}{ccc}\omega^2 & 1 & \omega \\ 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1\end{array}\right]\left[\begin{array}{ccc}\omega^2 & 1 & \omega \\ 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

Similarly $P ^2 \neq 0$ when $n$ is not multiple of $3.$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.