- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
If $A$=$\left[ {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&2\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}1&2&3\\0&1&3\\0&0&2\end{array}} \right],$ then $|AB|$ is equal to
A
$4$
B
$8$
C
$16$
D
$32$
Solution
(c) $A = \left[ {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&2\end{array}} \right] = 2I$
$\therefore $ $AB = 2IB = 2B = \left[ {\begin{array}{*{20}{c}}2&4&6\\0&2&6\\0&0&4\end{array}} \right]$
Therefore $|AB| = \left| {\,\begin{array}{*{20}{c}}2&4&6\\0&2&6\\0&0&4\end{array}\,} \right| = 2(8) = 16$
Aliter : $|A| = 2 \times 2 \times 2 = 8$, $|B| = 1 \times 1 \times 2 = 2$
$\therefore $ $|AB| = \,|A|\,|B| = 2 \times 8 = 16$.
Standard 12
Mathematics