Gujarati
3 and 4 .Determinants and Matrices
normal

Let $M$ and $N$ be two $3 \times 3$ matrices such that $M N=N M$. Further, if $M \neq N^2$ and $M^2=N^4$, then

$(A)$ determinant of $\left( M ^2+ MN ^2\right)$ is $0$

$(B)$ there is a $3 \times 3$ non-zero matrix $U$ such that $\left( M ^2+ MN ^2\right) U$ is the zero matrix

$(C)$ determinant of $\left( M ^2+ MN ^2\right) \geq 1$

$(D)$ for a $3 \times 3$ matrix $U$, if $\left( M ^2+ MN ^2\right) U$ equals the zero matrix then $U$ is the zero matrix

A

$(B,D)$

B

$(B,C)$

C

$(A,B)$

D

$(A,D)$

(IIT-2014)

Solution

$M N=N M \& M^2-N^4=0$

$Image$

$(A)$$\left| M ^2+ MN ^2\right|=| M |\left| M + N ^2\right| $

=0 $(A)$ is correct

$(B)$ If $| A |=0$ then $AU =0$ will have $\infty$ solution. Thus $\left( M ^2+ MN ^2\right) U =0$ will have many ' $U$ ' $( B )$ is correct

$(C)$ Obvious wrong.

$(D)$ If $A X=0 \&|A|=0$ then $X$ can be non zero. $(D)$ is wrong

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.