- Home
- Standard 12
- Mathematics
1.Relation and Function
medium
Let $X = R \times R$. Define a relation $R$ on $X$ as: $\left(a_1, b_1\right) R\left(a_2, b_2\right) \Leftrightarrow b_1=b_2 .$ Statement-$I: R$ is an equivalence relation. Statement$-II$: For some $( a , b ) \in X$, the set $S=\{(x, y) \in X:(x, y) R(a, b)\}$ represents a line parallel to $y = x$. In the light of the above statements, choose the correct answer from the options given below:
ABoth Statement$-I$ and Statement$-II$ are false.
BStatement$-I$ is true but Statement$-II$ is false.
CBoth Statement$-I$ and Statement$-II$ are true.
DStatement$-I$ is false but Statement$-II$ is true.
(JEE MAIN-2025)
Solution
Statement $- I :$
Reflexive : $\left(a_1, b\right) R\left(a_1, b_1\right) \Rightarrow b_1=b_1 \quad$ True
Symmetric: $\left.\begin{array}{rl} & \left(a_1, b_1\right) R\left(a_2, b_2\right) \Rightarrow b_1=b_2 \\ & \left(a_2, b_2\right) R\left(a_1, b_1\right) \Rightarrow b_2=b_1\end{array}\right\}$ True
Transitive :
$$\left.\begin{array}{l}
\left(a_1, b_1\right) R\left(a_2, b_2\right) \Rightarrow b_1=b_2 \\
\&\left(a_2, b_2\right) R\left(a_3, b_3\right) b_2=b_3 \\
\Rightarrow\left(a_1, b_1\right) R\left(a_3, b_3\right) \Rightarrow \text { True }
\end{array}\right\} b_1=b_3$$
Hence Relation $R$ is an equivence relation Statement$-I$ is true.
For statement $- II$ $\Rightarrow y = b$ so False
Reflexive : $\left(a_1, b\right) R\left(a_1, b_1\right) \Rightarrow b_1=b_1 \quad$ True
Symmetric: $\left.\begin{array}{rl} & \left(a_1, b_1\right) R\left(a_2, b_2\right) \Rightarrow b_1=b_2 \\ & \left(a_2, b_2\right) R\left(a_1, b_1\right) \Rightarrow b_2=b_1\end{array}\right\}$ True
Transitive :
$$\left.\begin{array}{l}
\left(a_1, b_1\right) R\left(a_2, b_2\right) \Rightarrow b_1=b_2 \\
\&\left(a_2, b_2\right) R\left(a_3, b_3\right) b_2=b_3 \\
\Rightarrow\left(a_1, b_1\right) R\left(a_3, b_3\right) \Rightarrow \text { True }
\end{array}\right\} b_1=b_3$$
Hence Relation $R$ is an equivence relation Statement$-I$ is true.
For statement $- II$ $\Rightarrow y = b$ so False
Standard 12
Mathematics
Similar Questions
easy