Let $\overrightarrow C = \overrightarrow A + \overrightarrow B $ then
$|\overrightarrow {C|} $ is always greater then $|\overrightarrow A |$
It is possible to have $|\overrightarrow C |\, < \,|\overrightarrow A |$ and $|\overrightarrow C |\, < \,|\overrightarrow B |$
$C$ is always equal to $A + B$
$C$ is never equal to $A + B$
If $|\,\vec A + \vec B\,|\, = \,|\,\vec A\,| + |\,\vec B\,|$, then angle between $\vec A$ and $\vec B$ will be ....... $^o$
Two forces each numerically equal to $10$ $dynes$ are acting as shown in the adjoining figure, then the magnitude of resultant is.........$dyne$
Mark the correct statement :-