Let $\overrightarrow C = \overrightarrow A + \overrightarrow B $ then
$|\overrightarrow {C|} $ is always greater then $|\overrightarrow A |$
It is possible to have $|\overrightarrow C |\, < \,|\overrightarrow A |$ and $|\overrightarrow C |\, < \,|\overrightarrow B |$
$C$ is always equal to $A + B$
$C$ is never equal to $A + B$
The position vectors of points $A, B, C$ and $D$ are $\vec A = 3\hat i + 4\hat j + 5\hat k,\,\vec B = 4\hat i + 5\hat j + 6\hat k,\,\vec C = 7\hat i + 9\hat j + 3\hat k$ and $\vec D = 4\hat i + 6\hat j$ then the displacement vectors $\overrightarrow {AB} $ and $\overrightarrow {CD} $ are
The vector sum of two forces is perpendicular to their vector differences. In that case, the forces
An object of $m\, kg$ with speed of $v\, m/s$ strikes a wall at an angle $\theta$ and rebounds at the same speed and same angle. The magnitude of the change in momentum of the object will be