Let $\overrightarrow C = \overrightarrow A + \overrightarrow B $ then

  • A

    $|\overrightarrow {C|} $ is always greater then $|\overrightarrow A |$

  • B

    It is possible to have $|\overrightarrow C |\, < \,|\overrightarrow A |$ and $|\overrightarrow C |\, < \,|\overrightarrow B |$

  • C

    $C$ is always equal to $A + B$

  • D

    $C$ is never equal to $A + B$

Similar Questions

The vectors $\vec{A}$ and $\vec{B}$ are such that

$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$

The angle between the two vectors is

  • [AIPMT 1991]

Which of the following forces cannot be a resultant of $5\, N$ and $7\, N$ force...........$N$

The magnitudes of vectors $\vec A,\,\vec B$ and $\vec C$ are $3, 4$ and $5$ units respectively. If $\vec A + \vec B = \vec C$, the angle between $\vec A$ and $\vec B$ is

  • [AIPMT 1988]

Five equal forces of $10 \,N$ each are applied at one point and all are lying in one plane. If the angles between them are equal, the resultant force will be ........... $\mathrm{N}$

Which of the four arrangements in the figure correctly shows the vector addition of two forces $\overrightarrow {{F_1}} $ and $\overrightarrow {{F_2}} $ to yield the third force $\overrightarrow {{F_3}} $