Let $\overrightarrow C = \overrightarrow A + \overrightarrow B $ then

  • A

    $|\overrightarrow {C|} $ is always greater then $|\overrightarrow A |$

  • B

    It is possible to have $|\overrightarrow C |\, < \,|\overrightarrow A |$ and $|\overrightarrow C |\, < \,|\overrightarrow B |$

  • C

    $C$ is always equal to $A + B$

  • D

    $C$ is never equal to $A + B$

Similar Questions

Two vectors having equal magnitudes $A$ make an angle $\theta$ with each other. The magnitude and direction of the resultant are respectively

A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by

$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. Find If $|\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{A C}|=n a$ then $n =$ ?

How many minimum number of non-zero vectors in different planes can be added to give zero resultant

If $\left| {{{\vec v}_1} + {{\vec v}_2}} \right| = \left| {{{\vec v}_1} - {{\vec v}_2}} \right|$ and ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are finite, then