माना $\mathop C\limits^ \to = \mathop A\limits^ \to + \mathop B\limits^ \to $ तब

  • A

    $|\mathop C\limits^ \to $ हमेशा $|\mathop A\limits^ \to |$ से अधिक है

  • B

    $|\mathop C\limits^ \to |\, < \,|\mathop A\limits^ \to |$ तथा $|\mathop C\limits^ \to |\, < \,|\mathop B\limits^ \to |$ सम्भव हो सकता है

  • C

    $C$ हमेशा $A + B$ के बराबर है

  • D

    $C , A + B$ के बराबर नहीं हो सकता

Similar Questions

$\mathop A\limits^ \to $तथा $\mathop B\limits^ \to $ दो सदिश एक तल में स्थित हैं तथा एक अन्य सदिश $\mathop C\limits^ \to $ इस तल के बाहर है, तो इन तीन सदिशों का परिणामी अर्थात $\mathop A\limits^ \to + \mathop B\limits^ \to + \mathop C\limits^ \to $

दिये गये बलों के युग्म मे से किस युग्म का परिणामी $2\, N$ नहीं हो सकता

$10 \,N$ के $100 $ समतलीय बल एक वस्तु पर कार्य करते हैं। प्रत्येक बल अपने पहले वाले बल से $\pi /50$ का कोण बनाता है इन बलों का परिणामी ......... $N$ होगा

समान परिमाण $F$ वाले दो बल एक वस्तु पर क्रिया करते हैं और परिणामी $\frac{F}{3}$ है। इन दोनों बलों के बीच का कोण होगा

दो सदिशों $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के परिमाण समान है। $(\overrightarrow{ A }+\overrightarrow{ B })$ का परिमाण $(\overrightarrow{ A }-\overrightarrow{ B })$ के परिमाण का $n$ गुना है। $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के मध्य कोण है।

  • [JEE MAIN 2019]