Gujarati
7.Binomial Theorem
medium

Let $n$ be an odd integer. If $\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta } $ for every value of $\theta $, then

A

${b_0} = 1,{b_1} = 3$

B

${b_0} = 0,{b_1} = n$

C

${b_0} = - 1,{b_1} = n$

D

${b_0} = 0,{b_1} = {n^2} - 3n + 3$

Solution

(b) Given $\sin \,n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta } $

==> $\sin n\theta = {b_0}{\sin ^0}\theta + {b_1}\sin {\,^1}\theta $

$ + {b_2}{\sin ^2}\theta + {b_3}{\sin ^3}\theta + ….. + {b_n}{\sin ^n}\theta $

==> $\sin n\theta = {b_0} + {b_1}\sin \theta + {b_2}{\sin ^2}\theta + …. + {b_n}{\sin ^n}\theta $

($n$ is an odd integer)

$ = {\,^n}{C_1}\sin \theta .{(1 – {\sin ^2}\theta )^{(n – 1)/2}}$

$ – {\,^n}{C_3}{\sin ^3}\theta {(1 – {\sin ^2}\theta )^{(n – 3)/2}} + ….$

$\therefore \,\,\,{b_0} = 0,{b_1} = $ coefficient of $\sin \theta = {\,^n}{C_1} = n$

($ n -1= n -3$ are all even integers)

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.