Let $n$ be an odd integer. If $\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta } $ for every value of $\theta $, then
${b_0} = 1,{b_1} = 3$
${b_0} = 0,{b_1} = n$
${b_0} = - 1,{b_1} = n$
${b_0} = 0,{b_1} = {n^2} - 3n + 3$
If $r,k,p \in W,$ then $\sum\limits_{r + k + p = 10} {{}^{30}{C_r} \cdot {}^{20}{C_k} \cdot {}^{10}{C_p}} $ is equal to -
The sum of the last eight coefficients in the expansion of ${(1 + x)^{15}}$ is
If n is a positive integer and ${C_k} = {\,^n}{C_k}$, then the value of ${\sum\limits_{k = 1}^n {{k^3}\left( {\frac{{{C_k}}}{{{C_{k - 1}}}}} \right)} ^2}$ =
If ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ and ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, then $\frac{{{t_n}}}{{{S_n}}}$ is equal to
If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, then the value of ${C_0} + {C_2} + {C_4} + {C_6} + .....$ is