Let $A =$ $\left[ {\begin{array}{*{20}{c}}1&{\sin \theta }&1\\{ - \sin \theta }&1&{\sin \theta }\\{ - 1}&{ - \sin \theta }&1\end{array}} \right]$, where $0 \le \theta < 2\pi$ , then

  • A

    $Det\, (A) = 0$

  • B

    $Det\, A \in (0, \infty )$

  • C

    $Det\, (A) \in [2, 4]$

  • D

    $Det\, A \in [2, \infty )$

Similar Questions

The number of values of $k $ for which the system of equations $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ has infinitely many solutions, is

  • [IIT 2002]

Let $S=\left\{A=\left(\begin{array}{lll}0 & 1 & c \\ 1 & a & d \\ 1 & b & e\end{array}\right): a, b, c, d, e \in\{0,1\}\right.$ and $\left.|A| \in\{-1,1\}\right\}$, where $|A|$ denotes the determinant of $A$. Then the number of elements in $S$ is. . . . .

  • [IIT 2024]

If $D_1$ and $D_2$ are two $3 \times 3$ diagonal matrices, then

If $A, B, C$ are the angles of triangle then the value of determinant $\left| {\begin{array}{*{20}{c}}
  {\sin \,2A}&{\sin \,C}&{\sin \,B} \\ 
  {\sin \,C}&{\sin \,2B}&{\sin A} \\ 
  {\sin \,B}&{\sin \,A}&{\sin \,2C} 
\end{array}} \right|$ is

The cubic $\left| {\begin{array}{*{20}{c}}
  0&{a - x}&{b - x} \\ 
  { - a - x}&0&{c - x} \\ 
  { - b - x}&{ - c - x}&0 
\end{array}} \right| = 0$ has a reperated root in $x$ then,