Let $A =$ $\left[ {\begin{array}{*{20}{c}}1&{\sin \theta }&1\\{ - \sin \theta }&1&{\sin \theta }\\{ - 1}&{ - \sin \theta }&1\end{array}} \right]$, where $0 \le \theta < 2\pi$ , then
$Det\, (A) = 0$
$Det\, A \in (0, \infty )$
$Det\, (A) \in [2, 4]$
$Det\, A \in [2, \infty )$
$\left| {\,\begin{array}{*{20}{c}}{{{\sin }^2}x}&{{{\cos }^2}x}&1\\{{{\cos }^2}x}&{{{\sin }^2}x}&1\\{ - 10}&{12}&2\end{array}\,} \right| = $
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right| = $
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}x&0&8\\4&1&3\\2&0&x\end{array}\,} \right| = 0$ are equal to
Let the system of linear equations $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?
If the system of linear equation $x - 4y + 7z = g,\,3y - 5z = h, \,-\,2x + 5y - 9z = k$ is
consistent, then