Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

Let $A =$ $\left[ {\begin{array}{*{20}{c}}1&{\sin \theta }&1\\{ - \sin \theta }&1&{\sin \theta }\\{ - 1}&{ - \sin \theta }&1\end{array}} \right]$, where $0 \le \theta < 2\pi$ , then

A

$Det\, (A) = 0$

B

$Det\, A \in (0, \infty )$

C

$Det\, (A) \in [2, 4]$

D

$Det\, A \in [2, \infty )$

Solution

$| A | =$ $\left| {\,\begin{array}{*{20}{c}}1&{\sin \theta }&1\\{ – \sin \theta }&1&{\sin \theta }\\{ – 1}&{ – \sin \theta }&1\end{array}\,} \right|$

$= 1(1 + \sin^2\theta ) – \sin\theta (- \sin\theta + \sin\theta ) + (1 + \sin^2\theta ) = 2\, (1 + \sin^2\theta )$ $| \sin\theta | \le 1$

$==> -1 \le \sin\theta \le 1$

$==> 0 \le \sin^2\theta \le 1$

==> $1 \le 1 + \sin^2\theta \le 2$

$==> 2 \le 2(1 + \sin2\theta ) \le 4$

==> $| A | \in [2, 4]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.