3 and 4 .Determinants and Matrices
hard

If ${D_p} = \left| {\,\begin{array}{*{20}{c}}p&{15}&8\\{{p^2}}&{35}&9\\{{p^3}}&{25}&{10}\end{array}\,} \right|$, then ${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = $

A

$0$

B

$25$

C

$625$

D

$- 700000$

Solution

(d) ${D_1} = \left| {\,\begin{array}{*{20}{c}}1&{15}&8\\1&{35}&9\\1&{25}&{10}\end{array}\,} \right|,{D_2} = \left| {\,\begin{array}{*{20}{c}}2&{15}&8\\4&{35}&9\\8&{25}&{10}\end{array}\,} \right|$

${D_3} = \left| {\,\begin{array}{*{20}{c}}3&{15}&8\\9&{35}&9\\{27}&{25}&{10}\end{array}\,} \right|,{D_4} = \left| {\,\begin{array}{*{20}{c}}4&{15}&8\\{16}&{35}&9\\{64}&{25}&{10}\end{array}\,} \right|$

${D_5} = \left| {\,\begin{array}{*{20}{c}}5&{15}&8\\{25}&{35}&9\\{125}&{25}&{10}\end{array}\,} \right|$

==> ${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = \left| {\,\begin{array}{*{20}{c}}{15}&{75}&{40}\\{55}&{175}&{45}\\{225}&{125}&{50}\end{array}\,} \right|$

$ = 15(3125) – 75( – 7375) + 40( – 32500)$

$ = 46875 + 553125 – 1300000 = – 700000$ .

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.