- Home
- Standard 11
- Mathematics
7.Binomial Theorem
normal
Let $(1 + x)(1 + x + x^2)(1 + x + x^2 + x^3)\,\, ......\,\,$$(1 + x + x^2 + ..... + x^{30}) = $$a_0 + a_1x + a_2x^2$ .....$+$ $a_{465}x^{465}$, then sum of $a_0 + a_2 + a_4 + ......... +$ is
A
$(31)!$
B
$\frac{(31)!}{2}$
C
$(30)!$
D
$\frac{(60)!}{2}$
Solution
put $x=1$
$(31) !=a_{0}+a_{1}+a_{2}+\ldots \ldots$ $(1)$
put $x=-1$
$0=a_{0}-a_{1}+a_{2}-\ldots \ldots \ldots$ $(2)$
$(1)+(2) \Rightarrow \frac{(31) !}{2}=a_{0}+a_{2}+a_{4}+\ldots \ldots .$
Standard 11
Mathematics