Let $(1 + x)(1 + x + x^2)(1 + x + x^2 + x^3)\,\, ......\,\,$$(1 + x + x^2 + ..... + x^{30}) = $$a_0 + a_1x + a_2x^2$ .....$+$ $a_{465}x^{465}$, then sum of $a_0 + a_2 + a_4 + ......... +$ is
$(31)!$
$\frac{(31)!}{2}$
$(30)!$
$\frac{(60)!}{2}$
The number of terms in the expansion of $(1 +x)^{101} (1 +x^2 - x)^{100}$ in powers of $x$ is
Let $\left( a + bx + cx ^2\right)^{10}=\sum \limits_{ i =0}^{20} p _{ i } x ^{ i }, a , b , c \in N$. If $p _1=20$ and $p _2=210$, then $2( a + b + c )$ is equal to
If the sum of the coefficients of all the positive even powers of $x$ in the binomial expansion of $\left(2 x^{3}+\frac{3}{x}\right)^{10}$ is $5^{10}-\beta \cdot 3^{9}$, then $\beta$ is equal to
$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$ = . . .
In the expansion of
$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ find the coefficient of $x^{12}$ is :-