જો $A, B, C$ એ ત્રણ ખૂણા છે કે જેથી $sinA + sinB + sinC = 0,$ થાય તો
$ \frac {sinAsin BsinC}{(sin 3A+ sin 3B+ sin 3C)}$ (wherever definied)=
$12$
$-12$
$ - \frac{1}{12}$
$\frac{1}{12}$
જો $\tan \alpha = \frac{1}{7}$ અને $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, તો $2\beta = . . . .$
$(sinx + cosecx)^2 + (cosx + secx)^2 - ( tanx + cotx)^2$ =
જો $\tan x = \frac{{2b}}{{a - c}}(a \ne c),$
$y = a\,{\cos ^2}x + 2b\,\sin x\cos x + c\,{\sin ^2}x$
અને $z = a{\sin ^2}x - 2b\sin x\cos x + c{\cos ^2}x,$ તો
કોઈ પણ $\theta \, \in \,\left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$ માટે, $3\,{\left( {\sin \,\theta - \cos \,\theta } \right)^4} + 6{\left( {\sin \,\theta + \cos \,\theta } \right)^2} + 4\,{\sin ^6}\,\theta $ =
$\sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 = . . ..$