- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
normal
Let $A, B, C$ are three angles such that $sinA + sinB + sinC = 0,$ then
$ \frac {sinAsin BsinC}{(sin 3A+ sin 3B+ sin 3C)}$ (wherever definied) is -
A
$12$
B
$-12$
C
$ - \frac{1}{12}$
D
$\frac{1}{12}$
Solution
$\frac{\sin A \sin B \sin C}{\left(3(\sin A+\sin B+\sin C)-4\left(\sin ^{3} A+\sin ^{3} B+\sin ^{3} C\right)\right)}$
$=-\frac{1}{12}$
Standard 11
Mathematics