Let $A, B, C$ are three angles such that $sinA + sinB + sinC = 0,$ then
$ \frac {sinAsin BsinC}{(sin 3A+ sin 3B+ sin 3C)}$ (wherever definied) is -
$12$
$-12$
$ - \frac{1}{12}$
$\frac{1}{12}$
$cosec^2\theta $ = $\frac{4xy}{(x +y)^2}$ is true if and only if
The value of $cot\, 7\frac{{{1^0}}}{2}$ $+ tan\, 67 \frac{{{1^0}}}{2} - cot 67 \frac{{{1^0}}}{2} - tan7 \frac{{{1^0}}}{2}$ is :
$\sin {20^o}\,\sin {40^o}\,\sin {60^o}\,\sin {80^o} = $
The value of $\tan 7\frac{1}{2}^\circ $ is equal to
The value of $\frac{{3 + \cot \,7\,{6^ \circ }\,\cot \,{{16}^ \circ }}}{{\cot \,{{76}^ \circ } + \cot \,{{16}^ \circ }}}$ is :