3.Trigonometrical Ratios, Functions and Identities
normal

Let $A, B, C$ are three angles such that $sinA + sinB + sinC = 0,$ then

$ \frac {sinAsin BsinC}{(sin 3A+ sin 3B+ sin 3C)}$ (wherever definied) is -

A

$12$

B

$-12$

C

$  - \frac{1}{12}$

D

$\frac{1}{12}$

Solution

$\frac{\sin A \sin B \sin C}{\left(3(\sin A+\sin B+\sin C)-4\left(\sin ^{3} A+\sin ^{3} B+\sin ^{3} C\right)\right)}$

$=-\frac{1}{12}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.