3 and 4 .Determinants and Matrices
normal

Let $[.]$ , $ \{.\} $ and $sgn$$(.)$ denotes greatest integer function, fractional part function and signum function respectively, then value of determinant

$\left| {\begin{array}{*{20}{c}}
  {\left[ \pi  \right]}&{amp(1 + i\sqrt 3 )}&1 \\ 
  1&0&2 \\ 
  {\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} } 
\end{array}} \right|$ is-

A

$ - 6 + \frac{{5\pi }}{3} - \frac{{{\pi ^2}}}{3}$

B

$\frac{{5\pi }}{3} - \frac{{{\pi ^2}}}{3} - 5$

C

$\frac{{5\pi }}{3} + \frac{{{\pi ^2}}}{3} + 6$

D

$ - 5 + \frac{{{\pi ^3}}}{3} - \frac{{5{\pi ^2}}}{3}$

Solution

$\left|\begin{array}{ccc}{3} & {\pi / 3} & {1} \\ {1} & {0} & {2} \\ {1} & {1} & {\pi-3}\end{array}\right|=-6+\frac{\pi}{3}(2-\pi+3)+1$

$=-\frac{\pi^{2}}{3}+\frac{5 \pi}{3}-5$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.