Let the system of linear equations $x +2 y + z =2$, $\alpha x +3 y - z =\alpha,-\alpha x + y +2 z =-\alpha$ be inconsistent. Then $\alpha$ is equal to
$\frac{5}{2}$
$\frac{7}{2}$
$-\frac{7}{2}$
$-\frac{5}{2}$
If $D(x) =$ $\left| {\begin{array}{*{20}{c}}{x - 1}&{{{(x - 1)}^2}}&{{x^3}}\\{x - 1}&{{x^2}}&{{{(x + 1)}^3}}\\x&{{{(x + 1)}^2}}&{{{(x + 1)}^3}}\end{array}} \right|$ then the coefficient of $x$ in $D(x)$ is
$\left| {\,\begin{array}{*{20}{c}}{1/a}&{{a^2}}&{bc}\\{1/b}&{{b^2}}&{ca}\\{1/c}&{{c^2}}&{ab}\end{array}\,} \right| = $
If the system of equations $x + 2y + 3z = 4 , x + py + 2z = 3 , x + 4y + \mu z = 3$ has an infinite number of solutions , then :
If the system of equations $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$ has infinitely many solutions, then $13 \alpha \beta$ is equal to
If $x + y - z = 0,\,3x - \alpha y - 3z = 0,\,\,x - 3y + z = 0$ has non zero solution, then $\alpha = $