Let $a$, $b \in R$  be such that $a$, $a + 2b$ , $2a + b$ are in $A.P$. and $(b + 1)^2$, $ab + 5$, $(a + 1)^2$ are in $G.P.$ then $(a + b)$ equals

  • A

    $-2$

  • B

    $2$

  • C

    $4$

  • D

    $7$

Similar Questions

If $\frac{{b + a}}{{b - a}} = \frac{{b + c}}{{b - c}}$, then $a,\;b,\;c$ are in

Let $0 < z < y < x$ be three real numbers such that $\frac{1}{ x }, \frac{1}{ y }, \frac{1}{ z }$ are in an arithmetic progression and $x$, $\sqrt{2} y, z$ are in a geometric progression. If $x y+y z$ $+z x=\frac{3}{\sqrt{2}} x y z$, then $3(x+y+z)^2$ is equal to $............$.

  • [JEE MAIN 2023]

If the $A.M.$ is twice the $G.M.$ of the numbers $a$ and $b$, then $a:b$ will be

If $\frac{{a + bx}}{{a - bx}} = \frac{{b + cx}}{{b - cx}} = \frac{{c + dx}}{{c - dx}}(x \ne 0)$, then $a,\;b,\;c,\;d$ are in

If $a + 2b + 3c = 6$, then the greatest value of $abc^2$ is (where $a,b,c$ are positive real numbers)