Let $z$, $w \in C$ satisfy ${z^2} + \bar w = z$ and ${w^2} + \bar z = w$ then number of ordered pairs of complex numbers $(z, w)$ is equal to
$0$
$1$
$2$
$3$
Let $Z$ and $W$ be complex numbers such that $\left| Z \right| = \left| W \right|,$ and arg $Z$ denotes the principal argument of $Z.$
Statement $1:$ If arg $Z+$ arg $W = \pi ,$ then $Z = -\overline W $.
Statement $2:$ $\left| Z \right| = \left| W \right|,$ implies arg $Z-$ arg $\overline W = \pi .$
If $|{z_1} + {z_2}| = |{z_1} - {z_2}|$, then the difference in the amplitudes of ${z_1}$ and ${z_2}$ is
The set of all $\alpha \in R$, for which $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ is a purely imaginary number, for all $z \in C$ satisfying $\left| z \right| = 1$ and ${\mathop{\rm Re}\nolimits} \,z \ne 1$, is
For any complex number $z,\bar z = \left( {\frac{1}{z}} \right)$if and only if
Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively