જો $z$, $w \in C$ માટે ${z^2} + \bar w = z$ અને ${w^2} + \bar z = w$ હોય તો સંકર સંખ્યા $(z, w)$ ની કેટલી જોડો મળે ?
$0$
$1$
$2$
$3$
જો ${(\sqrt 8 + i)^{50}} = {3^{49}}(a + ib)$ તો ${a^2} + {b^2}$ = . . .
જો $z$ એ સંકર સંખ્યા હોય અને $\frac{{z - 1}}{{z + 1}}$ એ શુદ્ધ કાલ્પનિક સંખ્યા હોય તો . . . .
જો $\frac{{2{z_1}}}{{3{z_2}}}$ એ શુદ્ધ કાલ્પનિક સંખ્યા હોય તો $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right|$ = . . .
ધારોકે $S=\left\{Z \in C: \bar{z}=i\left(z^2+\operatorname{Re}(\bar{z})\right)\right\}$.તો $\sum_{z \in S}|z|^2=........$
સંકર સંખ્યા $\frac{{2 + 5i}}{{4 - 3i}}$ ની અનુબદ્ધ સંકર સંખ્યા મેળવો.