4-1.Complex numbers
hard

Let a complex number $z ,| z | \neq 1$, satisfy $\log _{\frac{1}{\sqrt{2}}}\left(\frac{| z |+11}{(| z |-1)^{2}}\right) \leq 2 .$ Then, the largest value of $|z|$ is equal to ............

A

$8$

B

$7$

C

$6$

D

$5$

(JEE MAIN-2021)

Solution

$\log _{\frac{1}{\sqrt{2}}}\left(\frac{|z|+11}{(|z|-1)^{2}}\right) \leq 2$

$\frac{|z|+11}{(|z|-1)^{2}} \geq \frac{1}{2}$

$2|z|+22 \geq(|z|-1)^{2}$

$2|z|+22 \geq|z|^{2}+1-2|z|$

$|z|^{2}-4|z|-21 \leq 0$

$\Rightarrow|z| \leq 7$

$\therefore \quad$ Largest value of $|z|$ is $7$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.