Let the mean and standard deviation of marks of class $A$ of $100$ students be respectively $40$ and $\alpha( > 0)$, and the mean and standard deviation of marks of class $B$ of $n$ students be respectively $55$ and $30-\alpha$. If the mean and variance of the marks of the combined class of $100+ n$ students are respectively $50$ and $350$,then the sum of variances of classes $A$ and $B$ is 

  • [JEE MAIN 2023]
  • A

    $500$

  • B

    $650$

  • C

    $450$

  • D

    $900$

Similar Questions

If the standard deviation of the numbers $ 2,3,a $ and $11$ is $3.5$  then which of the following is true ?

  • [JEE MAIN 2016]

The mean and $S.D.$ of the marks of $200$ candidates were found to be $40$ and $15$ respectively. Later, it was discovered that a score of $40$ was wrongly read as $50$. The correct mean and $S.D.$ respectively are...

Calculate the mean, variance and standard deviation for the following distribution:

Class $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$
$f_i$ $3$ $7$ $12$ $15$ $8$ $3$ $2$

Let $a_1, a_2, \ldots . a_{10}$ be $10$ observations such that $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$ and $\sum_{\forall \mathrm{k}<\mathrm{j}} \mathrm{a}_{\mathrm{k}} \cdot \mathrm{a}_{\mathrm{j}}=1100$. Then the standard deviation of $a_1, a_2, \ldots, a_{10}$ is equal to :

  • [JEE MAIN 2024]

Given that $\bar{x}$ is the mean and $\sigma^{2}$ is the variance of $n$ observations $x_{1}, x_{2}, \ldots, x_{n}$ Prove that the mean and variance of the observations $a x_{1}, a x_{2}, a x_{3}, \ldots ., a x_{n}$ are $a \bar{x}$ and $a^{2} \sigma^{2},$ respectively, $(a \neq 0)$