13.Statistics
hard

Let the mean and standard deviation of marks of class $A$ of $100$ students be respectively $40$ and $\alpha( > 0)$, and the mean and standard deviation of marks of class $B$ of $n$ students be respectively $55$ and $30-\alpha$. If the mean and variance of the marks of the combined class of $100+ n$ students are respectively $50$ and $350$,then the sum of variances of classes $A$ and $B$ is 

A

$500$

B

$650$

C

$450$

D

$900$

(JEE MAIN-2023)

Solution

$A$ $B$ $A+B$
$\overline{ x }_1=40$ $\overline{ x }_2=55$ $\overline{ x }=50$
$\sigma_1=\alpha$ $\sigma_2=30-\alpha$ $\sigma^2=350$
$n _1=100$ $n _2= n$ $100+ n$

$\overline{ x }=\frac{100 \times 40+55 n }{100+ n }$

$5000+50 n =4000+55 n$

$1000=5 n$

$n =200$

$\sigma_1{ }^2=\frac{\sum x _{ i }^2}{100}-40^2$

$\sigma_2{ }^2=\frac{\sum x _{ j }^2}{100}-55^2$

$350=\sigma^2=\frac{\sum x _{ i }^2+\sum x _{ j }^2}{300}-(\overline{ x })^2$

$350=\frac{\left(1600+\alpha^2\right) \times 100+\left[(30-\alpha)^2+3025\right] \times 200}{300}-(50)^2$

$2850 \times 3=\alpha^2+2(30-\alpha)^2+1600+6050$

$8550=\alpha^2+2(30-\alpha)^2+7650$

$\alpha^2+2(30-\alpha)^2=900$

$\alpha^2-40 \alpha+300=0$

$\alpha=10,30$

$\sigma_1^2+\sigma_2^2=10^2+20^2=500$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.