There are 60 students in a class. The following is the frequency distribution of the marks obtained by the students in a test:

$\begin{array}{|l|l|l|l|l|l|l|} \hline \text { Marks } & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \text { Frequency } & x-2 & x & x^{2} & (x+1)^{2} & 2 x & x+1 \\ \hline \end{array}$

where $x$ is a positive integer. Determine the mean and standard deviation of the marks.

 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Sum of frequencies,

$x-2+x+x^{2}+(x+1)^{2}+2 x+x+1=60$

$2 x^{2}+7 x-60=0$

$(2 x+15)(x-4)=0$

$x=4$

$\begin{array}{|c|c|c|c|c|} \hline x _{ i } & f_{i} & d_{i}=x_{i}-3 & f_{i} d_{i} & f_{i} d_{i}^{2} \\ \hline 0 & 2 & -3 & -6 & 18 \\ \hline 1 & 4 & -2 & -8 & 16 \\ \hline 2 & 16 & -1 & -16 & 16 \\ \hline A=3 & 25 & 0 & 0 & 0 \\ \hline 4 & 8 & 1 & 8 & 8 \\ \hline 5 & 5 & 2 & 10 & 20 \\ \hline \text { Total } & \Sigma f_{i}=60 & & \Sigma f_{i}=-12 & \Sigma f_{i} d_{i}^{2}=78 \\ \hline \end{array}$

Mean $=A+\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}=3+\left(\frac{-12}{60}\right)=2.8$

Standard Deviation,

$\sigma$=$\sqrt{\frac{\Sigma f_{i} d_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}\right)^{2}}=\sqrt{\frac{78}{60}-\left(\frac{-12}{60}\right)^{2}}=\sqrt{1.3-0.04}=\sqrt{1.26}=1.12$

Similar Questions

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$ and $\mathrm{a}<\mathrm{b}<\mathrm{c}$. Let the mean, the mean deviation about the mean and the variance of the $5$ observations $9$,$25$, $a$, $b$, $c$ be $18$,$4$ and $\frac{136}{5}$, respectively. Then $2 \mathrm{a}+\mathrm{b}-\mathrm{c}$ is equal to ..............

  • [JEE MAIN 2024]

If the data $x_1, x_2, ...., x_{10}$ is such that the mean of first four of these is $11$, the mean of the remaining six is $16$ and the sum of squares of all of these is $2,000$; then the standard deviation of this data is

  • [JEE MAIN 2019]

Calculate the mean, variance and standard deviation for the following distribution:

Class $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$
$f_i$ $3$ $7$ $12$ $15$ $8$ $3$ $2$

Find the mean and variance of the frequency distribution given below:

$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$

Let $a_1, a_2, \ldots . a_{10}$ be $10$ observations such that $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$ and $\sum_{\forall \mathrm{k}<\mathrm{j}} \mathrm{a}_{\mathrm{k}} \cdot \mathrm{a}_{\mathrm{j}}=1100$. Then the standard deviation of $a_1, a_2, \ldots, a_{10}$ is equal to :

  • [JEE MAIN 2024]