7.Binomial Theorem
hard

Let the sixth term in the binomial expansion of $\left(\sqrt{2^{\log _2}\left(10-3^x\right)}+\sqrt[5]{2^{(x-2) \log _2 3}}\right)^m$, in the increasing powers of $2^{(x-2) \log _2 3}$, be $21$ . If the binomial coefficients of the second, third and fourth terms in the expansion are respectively the first, third and fifth terms of an $A.P.$, then the sum of the squares of all possible values of $x$ is $.........$.

A

$6$

B

$4$

C

$8$

D

$2$

(JEE MAIN-2023)

Solution

$T _6={ }^{ m } C _{ o }\left(10-3^{ x }\right)^{\frac{ m -5}{2}} \cdot\left(3^{ x -2}\right)=21$

${ }^{ m } C _1,{ }^{ m } C _2,{ }^{ m } C _3$ are in $A.P.$

$2.$ ${ }^{ m } C _2={ }^{ m } C _1+{ }^{ m } C _3$

Solving for $m$, we get

$m =$ $2$(rejected), $7$

Put in equation $(1)$

$21 .\left(10-3^x\right) \frac{3^x}{9}=21$

$3^x=3^0, 3^2$

$x =0,2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.