Let the system of linear equations $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ , have infinitely many solutions. Then the system $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10 \text { has : }$
infinitely many solutions
unique solution satisfying $x-y=1$
no solution
unique solution satisfying $x+y=1$
If $px^4 + qx^3 + rx^2 + sx + t$ $\equiv$ $\left| {\begin{array}{*{20}{c}}{{x^2}\, + \,\,3x}&{x\, - \,1}&{x\, + \,3}\\{x\, + \,1}&{2\, - \,x}&{x\, - \,3}\\{x\, - \,3}&{x\, + \,4}&{3x}\end{array}} \right|$ then $t =$
If the following system of linear equations
$2 x+y+z=5$
$x-y+z=3$
$x+y+a z=b$
has no solution, then :
If $x, y, z$ are in arithmetic progression with common difference $d , x \neq 3 d ,$ and the
determinant of the matrix $\left[\begin{array}{ccc}3 & 4 \sqrt{2} & x \\ 4 & 5 \sqrt{2} & y \\ 5 & k & z\end{array}\right]$ is zero, then the value of $k ^{2}$ is ..... .
Let the system of linear equations $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?
If $1,\omega ,{\omega ^2}$ are the cube roots of unity, then $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\\{{\omega ^{2n}}}&1&{{\omega ^n}}\end{array}\,} \right|$ is equal to