The value of $a$ for which the system of equations
$a^3x + ( a + 1)^3y + (a + 2)^3z = 0$ ; $ax + (a + 1) y + ( a + 2) z = 0$ ; $x + y + z = 0$, has a non zero solution is
$1$
$0$
$-1$
none of these
Let $S$ be the set of all values of $\theta \in[-\pi, \pi]$ for which the system of linear equations
$x+y+\sqrt{3} z=0$
$-x+(\tan \theta) y+\sqrt{7} z=0$
$x+y+(\tan \theta) z=0$
has non-trivial solution. Then $\frac{120}{\pi} \sum_{\theta \in s} \theta$ is equal to
$\left| {\,\begin{array}{*{20}{c}}1&5&\pi \\{{{\log }_e}e}&5&{\sqrt 5 }\\{{{\log }_{10}}10}&5&e\end{array}\,} \right| = $
If ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r - 2} \\
{\frac{n}{2}}&{n - 1}&a \\
{\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)}
\end{array}} \right|$ then the value of $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $
$x + ky - z = 0,3x - ky - z = 0$ and $x - 3y + z = 0$ has non-zero solution for $k =$
Let $\lambda, \mu \in R$. If the system of equations
$ 3 x+5 y+\lambda z=3 $
$ 7 x+11 y-9 z=2 $
$ 97 x+155 y-189 z=\mu$
has infinitely many solutions, then $\mu+2 \lambda$ is equal to :