Gujarati
Hindi
3 and 4 .Determinants and Matrices
hard

Match the Statements / Expressions in Column $I$ with the Statements / Expressions in Column $II$ and indicate your answer by darkening the appropriate bubbles in the $4 \times 4$ matrix given in the $ORS$.

Column $I$ Column $II$
$(A)$ The minimum value of $\frac{x^2+2 x+4}{x+2}$ is $(p)$ $0$
$(B)$ Let $A$ and $B$ be $3 \times 3$ matrices of real numbers, where $A$ is symmetric, $B$ is skewsymmetric, and $(A+B)(A-B)=(A-B)(A+B)$. If $(A B)^t=(-1)^k A B$, where $(A B)^t$ is the transpose of the matrix $A B$, then the possible values of $k$ are $(q)$ $1$
$(C)$ Let $\mathrm{a}=\log _3 \log _3 2$. An integer $\mathrm{k}$ satisfying $1<2^{\left(-k+3^{-2}\right)}<2$, must be less than $(r)$ $2$
$(D)$ If $\sin \theta=\cos \phi$, then the possible values of $\frac{1}{\pi}\left(\theta \pm \phi-\frac{\pi}{2}\right)$ are $(s)$ $3$

A

$(A) \rightarrow(r) ;(B) \rightarrow(q, s) ;(C) \rightarrow(r, s) ;(D) \rightarrow(p, r)$

B

$(A) \rightarrow(r) ;(B) \rightarrow(p, q) ;(C) \rightarrow(r, p) ;(D) \rightarrow(p, s)$

C

$(A) \rightarrow(q) ;(B) \rightarrow(q, r) ;(C) \rightarrow(r, s) ;(D) \rightarrow(p, s)$

D

$(A) \rightarrow(q) ;(B) \rightarrow(q, r) ;(C) \rightarrow(r, s) ;(D) \rightarrow(s, q)$

(IIT-2008)

Solution

$ \text { (A) } y=\frac{x^2+2 x+4}{x+2} $

$ \Rightarrow x^2+(2-y) x+4-2 y=0 $

$ \Rightarrow y^2+4 y-12 \geq 0 $

$ y \leq-6 \text { or } y \geq 2$

minimum value is $2$

$ \text { (B) }(\mathrm{A}+\mathrm{B})(\mathrm{A}-\mathrm{B})=(\mathrm{A}-\mathrm{B})(\mathrm{A}+\mathrm{B}) $

$ \Rightarrow \mathrm{AB}=\mathrm{BA}$

as $A$ is symmetric and $B$ is skew symmetric

$ \Rightarrow(A B)^t=-A B $

$ \Rightarrow k=1 \text { and } k=3$

$(C)$ $\mathrm{a}=\log _3 \log _3 2 \Rightarrow 3^{-\mathrm{a}}=\log _2 3$

$ \text { Now } 1<2^{-\mathrm{k}+\log _2^3}<2 $

$ \Rightarrow 1<3.2^{-\mathrm{k}}<2 $

$ \Rightarrow \log _2\left(\frac{3}{2}\right)<\mathrm{k}<\log _2(3) $

$ \Rightarrow \mathrm{k}=1 \text { or } \mathrm{k}<2 \text { and } \mathrm{k}<3 \text {. }$

$ \text { (D) } \sin \theta=\cos \phi \Rightarrow \cos \left(\frac{\pi}{2}-\theta\right)=\cos \phi $

$ \frac{\pi}{2}-\theta=2 \mathrm{n} \pi \pm \phi $

$ \frac{1}{\pi}\left(\theta \pm \phi-\frac{\pi}{2}\right)=-2 \mathrm{n} $

$ \Rightarrow 0 \text { and } 2 \text { are possible. }$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.