- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
Let $X$ and $Y$ be two arbitrary, $3 \times 3$, non-zero, skew-symmetric matrices and $Z$ be an arbitrary $3 \times 3$, nonzero, symmetric matrix. Then which of the following matrices is (are) skew symmetric?
$(A)$ $Y^3 Z^4-Z^4 Y^3$ $(B)$ $X ^{44}+ Y ^{44}$
$(C)$ $X ^4 Z ^3- Z ^3 X ^4$ $(B)$ $X ^{23}+ Y ^{23}$
A
$(B,D)$
B
$(B,C)$
C
$(A,C)$
D
$(C,D)$
(IIT-2015)
Solution
$\left( Y ^3 Z ^4- Z ^4 Y ^3\right)^{ T }$
$=\left( Z ^{ T }\right)^4\left( Y ^{ T }\right)^3-\left( Y ^{ I }\right)^3\left( Z ^{ T }\right)^4$
$=- Z ^4 Y ^3+ Y ^3 Z ^4 \Rightarrow \text { symmetric }$
$X ^{44}+ Y ^{44} \text { is symmetric }$
$X ^4 Z ^3- Z ^3 X ^4 \text { skew symmetric }$
$X ^{23}+ Y ^{23} \text { skew symmetric. }$
Standard 12
Mathematics