3 and 4 .Determinants and Matrices
normal

શ્રેણિક ${A_\lambda } = \left[ {\begin{array}{*{20}{c}}
  \lambda &{\lambda  - 1} \\ 
  {\lambda  - 1}&\lambda  
\end{array}} \right],\lambda  \in N$ હોય તો  $\left| {{A_1}} \right| + \left| {{A_2}} \right| + \left| {{A_3}} \right| + ....... + \left| {{A_{300}}} \right|$ મેળવો.

A

$(299)^2$

B

$(300)^2$

C

$(150)^2$

D

$(301)^2$

Solution

$\left| {{{\rm{A}}_\lambda }} \right| = \left| {\begin{array}{*{20}{c}}
\lambda &{\lambda  – 1}\\
{\lambda  – 1}&\lambda 
\end{array}} \right| = {\lambda ^2} – {[\lambda  – 1)^2}$

$ = 2\lambda  – 1$

$\therefore \left| {{{\rm{A}}_1}} \right| + \left| {{{\rm{A}}_2}} \right| + \left| {{{\rm{A}}_3}} \right| +  \ldots . + \left| {{{\rm{A}}_{300}}} \right|$

$=1+3^{2}+5+\ldots . .+599 $  

$= \frac{300}{2}(1+599)=(300)^{2} $

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.