Minimum value of the function $f(x) = \left| {\sin \,x + \cos \,x + \tan \,x + \cot \,x + \sec \,x + \ cosec\ x} \right|$ is equal to

  • A

    $2\sqrt 2$

  • B

    $2\sqrt 2  - 1$

  • C

    $2 + 3\sqrt 2 $

  • D

    $2\sqrt 2  + 1$

Similar Questions

If $K = sin^6x + cos^6x$, then $K$ belongs to the interval

The number of solutions of equation $3cos^2x - 8sinx = 0$ in $[0, 3\pi]$ is

The number of solutions of the pair of equations $ 2 \sin ^2 \theta-\cos 2 \theta=0 $, $ 2 \cos ^2 \theta-3 \sin \theta=0$ in the interval $[0,2 \pi]$ is

  • [IIT 2007]

The number of solutions to $\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ satisfying $0 \leq \theta \leq 2 \pi$ is

  • [KVPY 2019]

The most general value of $\theta $ satisfying the equations $\tan \theta = - 1$ and $\cos \theta = \frac{1}{{\sqrt 2 }}$ is