If $5{\cos ^2}\theta + 7{\sin ^2}\theta - 6 = 0$, then the general value of $\theta $ is
$2n\pi \pm \frac{\pi }{4}$
$n\pi \pm \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{4}$
None of these
The number of roots of the equation $\cos ^7 \theta-\sin ^4 \theta=1$ that lie in the interval $[0,2 \pi]$ is
Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$
Solve $\sin 2 x-\sin 4 x+\sin 6 x=0$
The number of values of $\alpha $ in $[0, 2\pi]$ for which $2\,{\sin ^3}\,\alpha - 7\,{\sin ^2}\,\alpha + 7\,\sin \,\alpha = 2$ , is
The sum of all values of $x$ in $[0,2 \pi]$, for which $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$, is equal to: