If $5{\cos ^2}\theta + 7{\sin ^2}\theta - 6 = 0$, then the general value of $\theta $ is
$2n\pi \pm \frac{\pi }{4}$
$n\pi \pm \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{4}$
None of these
If $2\,cos\,\theta + sin\, \theta \, = 1$ $\left( {\theta \ne \frac{\pi }{2}} \right)$ , then $7\, cos\,\theta + 6\, sin\, \theta $ is equal to
The number of elements in the set $S=$ $\left\{\theta \in[-4 \pi, 4 \pi]: 3 \cos ^{2} 2 \theta+6 \cos 2 \theta-\right.$ $\left.10 \cos ^{2} \theta+5=0\right\}$ is
The equation $\sin x\cos x = 2$ has
If $0 \le x \le \pi $ and ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$, then $x =$
The number of solutions to $\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ satisfying $0 \leq \theta \leq 2 \pi$ is