Molecularity of reaction of inversion of sugar is
$3$
$2$
$1$
$0$
Consider following two reaction,
$A \to {\text{Product ;}}\,\, - \frac{{d[A]}}{{dt}} = {k_1}{[A]^o}$
$B \to {\text{Product ;}}\,\, - \frac{{d[B]}}{{dt}} = {k_2}{[B]}$
Units of $k_1$ and $k_2$ are expressed in terms of molarity $(M)$ and time $(sec^{-1})$ as
For a reaction $A \to$ Products, a plot of $log\,t_{1/2}$ versus $log\,a_0$ is shown in the figure. If the initial concentration of $A$ is represented by $a_0,$ the order of the reaction is
$2 NO ( g )+ Cl _{2}( g ) \rightleftharpoons 2 NOCl ( s )$
This reaction was studied at $-10^{\circ} C$ and the following data was obtained
run | $[ NO ]_{0}$ | $\left[ Cl _{2}\right]_{0}$ | $r _{0}$ |
$1$ | $0.10$ | $0.10$ | $0.18$ |
$2$ | $0.10$ | $0.20$ | $0.35$ |
$3$ | $0.20$ | $0.20$ | $1.40$ |
$[ NO ]_{0}$ and $\left[ Cl _{2}\right]_{0}$ are the initial concentrations and $r _{0}$ is the initial reaction rate.
The overall order of the reaction is ..........
(Round off to the Nearest Integer).
For a reaction, $A+B \rightarrow$ Product; the rate law is given by, $r=k[ A ]^{1 / 2}[ B ]^{2}$ What is the order of the reaction?
In the following reaction $A \longrightarrow B + C$, rate constant is $0.001\, Ms^{-1}$. If we start with $1\, M$ of $A$ then concentration of $A$ and $B$ after $10\, minutes$ are respectively