Number of points on the ellipse $\frac{{{x^2}}}{{50}} + \frac{{{y^2}}}{{20}} = 1$ from which pair of perpendicular tangents are drawn to the ellips $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{9}} = 1$

  • A

    $0$

  • B

    $2$

  • C

    $1$

  • D

    $4$

Similar Questions

The value of $\lambda $, for which the line $2x - \frac{8}{3}\lambda y = - 3$ is a normal to the conic ${x^2} + \frac{{{y^2}}}{4} = 1$ is

If $m$ is the slope of a common tangent to the curves $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and $x^{2}+y^{2}=12$, then $12\; m ^{2}$ is equal to

  • [JEE MAIN 2022]

The equation of the ellipse whose latus rectum is $8$ and whose eccentricity is $\frac{1}{{\sqrt 2 }}$, referred to the principal axes of coordinates, is

If the ellipse $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ meets the line $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ on the $x$-axis and the line $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ on the $y$-axis, then the eccentricity of the ellipse is

  • [JEE MAIN 2022]

An ellipse $\frac{\left(x-x_0\right)^2}{a^2}+\frac{\left(y-y_0\right)^2}{b^2}=1$, $a > b$, is tangent to both $x$ and $y$ axes and is placed in the first quadrant. Let $F_1$ and $F_2$ be two foci of the ellipse and $O$ be the origin with $OF _1 < OF _2$. Suppose the triangle $OF _1 F _2$ is an isosceles triangle with $\angle OF _1 F _2=120^{\circ}$. Then the eccentricity of the ellipse is

  • [KVPY 2021]