For some $\theta \in\left(0, \frac{\pi}{2}\right),$ if the eccentricity of the hyperbola, $x^{2}-y^{2} \sec ^{2} \theta=10$ is $\sqrt{5}$ times the eccentricity of the ellipse, $x^{2} \sec ^{2} \theta+y^{2}=5,$ then the length of the latus rectum of the ellipse is
$\sqrt{30}$
$\frac{4 \sqrt{5}}{3}$
$2 \sqrt{6}$
$\frac{2 \sqrt{5}}{3}$
If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}}\, + \,\frac{{{y^2}}}{{{b^2}}}\, = \,1(a\, > \,b)$ is twice the area of the ellipse, then the eccentricity of the ellipse is
The co-ordinates of the foci of the ellipse $3{x^2} + 4{y^2} - 12x - 8y + 4 = 0$ are
If the maximum distance of normal to the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$, from the origin is $1$ , then the eccentricity of the ellipse is:
Tangents at extremities of latus rectum of ellipse $3x^2 + 4y^2 = 12$ form a rhombus of area (in $sq.\ units$) -
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$