- Home
- Standard 11
- Mathematics
For some $\theta \in\left(0, \frac{\pi}{2}\right),$ if the eccentricity of the hyperbola, $x^{2}-y^{2} \sec ^{2} \theta=10$ is $\sqrt{5}$ times the eccentricity of the ellipse, $x^{2} \sec ^{2} \theta+y^{2}=5,$ then the length of the latus rectum of the ellipse is
$\sqrt{30}$
$\frac{4 \sqrt{5}}{3}$
$2 \sqrt{6}$
$\frac{2 \sqrt{5}}{3}$
Solution
Given $\theta \in\left(0, \frac{\pi}{2}\right)$
equation of hyperbola $\Rightarrow x^{2}-y^{2} \sec ^{2} \theta=10$
$\Rightarrow \frac{x^{2}}{10}-\frac{y^{2}}{10 \cos ^{2} \theta}=1$
Hence eccentricity of hyperbola
$\left(\mathrm{e}_{\mathrm{H}}\right)=\sqrt{1+\frac{10 \cos ^{2} \theta}{10}} \ldots$.
$\left\{e=\sqrt{1+\frac{b^{2}}{a^{2}}}\right\}$
Now equation of ellipse $\Rightarrow x^{2} \sec ^{2} \theta+y^{2}=5$
$\Rightarrow \frac{\mathrm{x}^{2}}{5 \cos ^{2} \theta}+\frac{\mathrm{y}^{2}}{5}=1 \quad\left\{\mathrm{e}=\sqrt{1-\frac{\mathrm{a}^{2}}{\mathrm{b}^{2}}}\right\}$
Hence eccenticity of ellipse
$\left(e_{E}\right)=\sqrt{1-\frac{5 \cos ^{2} \theta}{5}}$
$\left(e_{E}\right)=\sqrt{1-\cos ^{2} \theta}=\sin \theta=\sin \theta \quad \cdots(2)$
$\left\{\because \theta \in\left(0, \frac{\pi}{2}\right)\right\}$
given $\Rightarrow \mathrm{e}_{\mathrm{H}}=\sqrt{5} \mathrm{e}_{\mathrm{e}}$
Hence $1+\cos ^{2} \theta=5 \sin ^{2} \theta$
$1+\cos ^{2} \theta=5\left(1-\cos ^{2} \theta\right)$
$1+\cos ^{2} \theta=5-5 \cos ^{2} \theta$
$6 \cos ^{2} \theta=4$
$\cos ^{2} \theta=\frac{2}{3}$
Now length of latus rectum of ellipse
$=\frac{2 \mathrm{a}^{2}}{\mathrm{b}}=\frac{10 \cos ^{2} \theta}{\sqrt{5}}=\frac{20}{3 \sqrt{5}}=\frac{4 \sqrt{5}}{3}$