- Home
- Standard 12
- Physics
Obtain an equation of current for $AC$ voltage applied to an inductor and draw a graph of $V$ and $I$.
Solution

In figure shows an $\mathrm{AC}$ source connected to an inductor.
Inductor has negligible resistance. Thus, the circuit is a purely inductive $\mathrm{AC}$ circuit. Let the voltage across the source be $\mathrm{V}=\mathrm{V}_{\mathrm{m}} \sin \omega t$. Using the Kirchhoff's loop rule,
$\mathrm{V}-\mathrm{L} \frac{d \mathrm{I}}{d t}=0$ where $-\mathrm{L} \frac{d \mathrm{I}}{d t}$ is the self induced $emf$.
$\therefore \mathrm{V}=\mathrm{L} \frac{d \mathrm{I}}{d t}$
$\therefore \frac{d \mathrm{I}}{d t}=\frac{\mathrm{V}}{\mathrm{L}}$
But $\mathrm{V}=\mathrm{V}_{\mathrm{m}} \sin \omega t$
$\therefore \frac{d \mathrm{I}}{d t}=\frac{\mathrm{V}_{\mathrm{m}} \sin \omega t}{\mathrm{~L}}$
$\therefore d \mathrm{I}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{L}} \sin \omega d t$
… $(1)$
where $\mathrm{L}$ is the self inductance. Equation $(1)$ indicates that current $\mathrm{I}(t)$ as a function of time, must be such that its slope $\frac{d \mathrm{I}}{d t} \sin e$ is a sinusoidally varying quantity with the same phase as the source voltage and an amplitude given by $\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{L}}$.
To obtain the current integrate equation $(1)$ with respect to time,
$\therefore \int d \mathrm{I}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{L}} \int \sin \omega t d t$
$\therefore \mathrm{I}=-\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{L}} \times \frac{\cos \omega t}{\omega}+\text { constant }$
Here, integration constant has the dimension of current and is time independent.
At $t=0$, time $I=0$
$\therefore 0=0+$ constant
$\therefore$ Constant $=0$
$\therefore$ From equation $(2)$,
$\therefore I=-\frac{V_{m}}{L \omega} \cos \omega t$