1. Electric Charges and Fields
medium

Obtain Gauss’s law from Coulomb’s law.

Option A
Option B
Option C
Option D

Solution

Coulombian force acting between charges $Q+q$ is,

$\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{Q} q}{r^{2}}$

$\frac{\mathrm{F}}{\mathrm{Q}}=\frac{q}{4 \pi \varepsilon_{0} \cdot r^{2}}$

$\text { But, } \frac{\mathrm{F}}{\mathrm{Q}}=\overrightarrow{\mathrm{E}}$

[Force acting on Q charge placed in electric field of $q$ means intensity of electric field E.]

$\therefore \mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r^{2}}$

$\therefore \mathrm{E} \times 4 \pi r^{2}=\frac{q}{\varepsilon_{0}}$

$\therefore \int \mathrm{E} d s=\frac{q}{\varepsilon_{0}}, \text { where } 4 \pi r^{2}=d s$

As $\mathrm{E}$ and $d s$ are vectors,

$\int \overrightarrow{\mathrm{E}} \cdot \overrightarrow{d s}=\frac{q}{\varepsilon_{0}}$ This is Gauss's law.

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.