- Home
- Standard 12
- Physics
The electric field $E$ is measured at a point $P (0,0, d )$ generated due to various charge distributions and the dependence of $E$ on $d$ is found to be different for different charge distributions. List-$I$ contains different relations between $E$ and $d$. List-$II$ describes different electric charge distributions, along with their locations. Match the functions in List-$I$ with the related charge distributions in List-$II$.
List-$I$ | List-$II$ |
$E$ is independent of $d$ | A point charge $Q$ at the origin |
$E \propto \frac{1}{d}$ | A small dipole with point charges $Q$ at $(0,0, l)$ and $- Q$ at $(0,0,-l)$. Take $2 l \ll d$. |
$E \propto \frac{1}{d^2}$ | An infinite line charge coincident with the x-axis, with uniform linear charge density $\lambda$ |
$E \propto \frac{1}{d^3}$ | Two infinite wires carrying uniform linear charge density parallel to the $x$-axis. The one along ( $y=0$, $z =l$ ) has a charge density $+\lambda$ and the one along $( y =0, z =-l)$ has a charge density $-\lambda$. Take $2 l \ll d$ |
plane with uniform surface charge density |
$P \rightarrow 5 ; Q \rightarrow 3,4 ; R \rightarrow 1 ; S \rightarrow 2$
$P \rightarrow 5 ; Q \rightarrow 3 ; R \rightarrow 1,4 ; S \rightarrow 2$
$P \rightarrow 5 ; Q \rightarrow 3 ; R \rightarrow 1,2 ; S \rightarrow 4$
$P \rightarrow 4 ; Q \rightarrow 2,3 ; R \rightarrow 1 ; S \rightarrow 5$
Solution
$( P ) \rightarrow(5),( Q ) \rightarrow(3),( R ) \rightarrow(1),(4) ;( S ) \rightarrow(2)$
$(1) E.F.$ due to a point charge at origin.
$E =\frac{ kq }{ d ^2} \Rightarrow E \propto \frac{1}{ d ^2}$
$(2) E.F.$ at any point on axis of dipole
$E =\frac{2 KP }{ d ^3}=\frac{4 KQL }{ d ^3}$
$E \propto \frac{1}{ d ^3}$
$(3) E.F$. due to an infinite long charge
$E =\frac{2 K \lambda}{ d }$
$E \propto \frac{1}{ d }$
$(4) E.F.$ due to two infinite long wires
$\overrightarrow{ E }=\overrightarrow{ E }_1+\overrightarrow{ E }_2$
$\overrightarrow{ E }=\frac{2 K \lambda}{ d – L }-\frac{2 K \lambda}{ d + L }=\frac{2 k \lambda(2 L )}{\left( d ^2- L ^2\right)}=\frac{4 K \lambda L }{ d ^2- L ^2}$
$\text { If } d \gg L \Rightarrow E =\frac{4 K \lambda L }{ d ^2} \Rightarrow E \propto \frac{1}{ d ^2}$
$(5) E.F$. due to infinite plane charge
$E =\frac{\sigma}{\epsilon_0} \quad \text { (independent of } d \text { ) }$